	anso 1 Weidner S ima, CA 9133	$N P$ O. treet 331			e pages D installatio					side CA vw.ha	$\begin{aligned} & \text { one: } \\ & \text { FAX: } \\ & \text { : 1-8 } \\ & \text { nsor } \end{aligned}$		
Masticerc									5	5			/ISA
Q Rivets offer greater shear strength and 100\% mandrel retention! The mandrel is designed to effect a weather-tight seal when installed properly and provide good vibration resistance. *NOTE: Mandrels break flush with the rivet head when in the Mid-Grip Range (except -04-01's which break at .062)				LARGE FLANGE	COUNTERS	$\begin{aligned} & \hline \text { UNK } \\ & 120^{\circ} \\ & \mathrm{B}-1 \\ & \mathrm{~B} \\ & \hline \mathrm{C} \\ & \mathrm{C} \\ & \hline \end{aligned}$					$\begin{aligned} & +\mathrm{H}-1 \\ & \hline \end{aligned}$	NORK H $\stackrel{\dagger}{\mathrm{G}}-\mathrm{GR}$	LE DIA. RANGE
RIVET MATERIAL MANDREL MATERIAL	HEAD STYLE	PART NUMBER	Avdel ${ }^{\circledR}$	\qquad	WORK HOLE \& DRILL SIZE	GRIP RANGE (SEE NOTE ABOVE)		VE)	BODY LENGTH (MAX.)		HEAD HEIGHT (MAX.)	TYPICAL ULTIMATE STRENGTHS IN LBS. (SEE NOTE) SHAR	
ALUMINUM RIVET PLAIN FINISH	PROTRUDING HEAD	QASD401 QASD402 QASD403 QASD404 QASD05 QASD406 QASD407 QASD408	BSPQ-04-01 BSPQ-04-02 BSPQ-04-03 BSPQ-04-04 BSPQ-04-05 BSPQ-04-06 BSPQ-04-07 BSPQ-04-08	$\begin{aligned} & .125 \\ & 1 / 8 \end{aligned}$	$.129 / .133$ $\# 30$.063 .094 .126 .188 .251 .313 .376	.093 .125 .187 .250 .312 .375 .437	$\begin{aligned} & \hline .062 \\ & .125 \\ & .187 \\ & .250 \\ & .312 \\ & .375 \\ & .437 \\ & .500 \\ & \hline \end{aligned}$	$\begin{aligned} & .212 \\ & .275 \\ & .37 \\ & .400 \\ & .462 \\ & .535 \\ & .602 \\ & .670 \end{aligned}$.250		350	边
			BSPQ-05-02 BSPQ-05-04 BSPQ-05-06 BSPQ-05-08	$\begin{aligned} & .156 \\ & 5 / 32 \end{aligned}$	$.160 / .164$ $\# 20$	$\begin{aligned} & .062 \\ & .126 \\ & .251 \\ & .376 \\ & \hline \end{aligned}$	$\begin{aligned} & .093 \\ & .187 \\ & .312 \\ & .437 \\ & \hline \end{aligned}$.125 .250 .375 .500	$\begin{aligned} & .300 \\ & .425 \\ & .550 \\ & .675 \\ & \hline \end{aligned}$. 312	. 050	525	450
		QASD602 QASD604 QASD606 QASD608 QASD610 QASD612 QASD614	BSPQ-06-02 BSPQ-06-04 BSPQ-06-06 BSPQ-06-08 BSPQ-06-10 BSPQ-06-12 BSPQ-06-14	$\begin{aligned} & .187 \\ & 3 / 16 \end{aligned}$	$\underset{\# 11}{.192 / .196}$.062 .126 .251 .376 .501 .626 .751	.093 .187 .312 .437 .562 .687 .812	.125 .250 .305 .500 .625 .550 .875	$\begin{aligned} & .325 \\ & .450 \\ & .575 \\ & .700 \\ & .850 \\ & .980 \\ & 1.110 \end{aligned}$. 375	. 060	750	650
		QASD802 QASD804 QASD806 QASD808 QASD810 QASD812 QASD814 QASD816	BSPQ-08-02 BSPQ-08-04 BSPQ-08-06 BSPQ-08-08 BSPQ-08-10 BSPQ-08-12 BSPQ-08-14 BSPQ-08-16	$\begin{aligned} & .250 \\ & 1 / 4 \end{aligned}$	$\underset{\mathrm{F}}{.2571 .261}$.062 .126 .251 .376 .501 .626 .751 .876	$\begin{aligned} & .093 \\ & .187 \\ & .312 \\ & .437 \\ & .562 \\ & .687 \\ & .812 \\ & .937 \end{aligned}$	$\begin{aligned} & \hline .125 \\ & .250 \\ & .375 \\ & .500 \\ & .625 \\ & .750 \\ & .875 \\ & 1.000 \end{aligned}$	$\begin{aligned} & .375 \\ & .500 \\ & .625 \\ & .750 \\ & .900 \\ & 1.030 \\ & 1.160 \\ & 1.290 \end{aligned}$. 500	. 080	1250	1050
	LARGE FLANGE	QASL402 QASL404 QASL406	$\begin{aligned} & \hline \text { BSLQ-04-02 } \\ & \text { BSLQ-04-04 } \\ & \text { BSLQ-04-06 } \end{aligned}$	$\begin{aligned} & .125 \\ & 1 / 8 \end{aligned}$	$\begin{gathered} .129 / .133 \\ \# 30 \end{gathered}$	$\begin{aligned} & \hline .126 \\ & .251 \\ & .376 \\ & \hline \end{aligned}$	$\begin{aligned} & .187 \\ & .312 \\ & .437 \\ & \hline \end{aligned}$	$\begin{aligned} & .250 \\ & .375 \\ & .500 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline .275 \\ & .400 \\ & .535 \\ & \hline \end{aligned}$. 375	. 065	350	325
		QASL504 QASL506 QASL508	$\begin{aligned} & \text { BSLQ-05-04 } \\ & \text { BSLQ-05-06 } \\ & \text { BSLQ-05-08 } \end{aligned}$	$\begin{array}{r} .156 \\ 5 / 32 \end{array}$	$\begin{gathered} .160 / .164 \\ \# 20 \end{gathered}$	$\begin{aligned} & \hline .126 \\ & .251 \\ & .376 \end{aligned}$	$\begin{aligned} & .187 \\ & .312 \\ & .437 \\ & \hline \end{aligned}$	$\begin{aligned} & .250 \\ & .375 \\ & .500 \end{aligned}$	$\begin{aligned} & .425 \\ & .550 \\ & .675 \end{aligned}$. 469	. 075	525	450
		QASL606 QASL608 QASL610 QASL612 QASL614	$\begin{aligned} & \text { BSLQ-06-06 } \\ & \text { BSLQ-06-08 } \\ & \text { BSLQ-06-10 } \\ & \text { BSLQ-06-12 } \\ & \text { BSLQ-06-14 } \end{aligned}$	$\begin{aligned} & .187 \\ & 3 / 16 \end{aligned}$	$\begin{gathered} .192 / .196 \\ \# 11 \end{gathered}$.251 .376 .501 .626 .751	.312 .437 .562 .687 .812	.375 .500 .625 .750 .875	$\begin{aligned} & .575 \\ & .700 \\ & .850 \\ & .980 \\ & 1.110 \end{aligned}$. 625	. 092	750	650
		QASL804 QASL806 QASL88 QASL810 QASL812 QASL814	BSLQ-08-04 BSLQ-08-06 BSLQ-08-08 BSLQ-08-10 BSLQ-08-12 BSLQ-08-14 BSLQ-08-16	$\begin{aligned} & .250 \\ & 1 / 4 \end{aligned}$	$\underset{\mathrm{F}}{.257 / 261}$.126 .251 .376 .501 .626 .751 .876	.187 .312 .37 .562 .687 .812 .937	$\begin{gathered} \hline .250 \\ .375 \\ .500 \\ .625 \\ .750 \\ .875 \\ 1.000 \\ \hline \end{gathered}$.500 .625 .750 .900 1.030 1.160 1.290	. 750	. 107	1250	1050
	$\begin{array}{\|c\|} 120^{\circ} \\ \text { COUNTERSUNK } \end{array}$	QASK403 QASK404 QASK405 QASK406 QASK407 QASK408	BSCQ-04-03 BSCQ-04-04 BSCQ-04-05 BSCQ-04-06 BSCQ-04-07 BSCQ-04-08	$\begin{aligned} & .125 \\ & 1 / 8 \end{aligned}$	$\begin{gathered} .129 / .133 \\ \# 30 \end{gathered}$.094 .126 .188 .251 .313 .376	$\begin{aligned} & .125 \\ & .187 \\ & .250 \\ & .312 \\ & .375 \\ & .437 \end{aligned}$.187 .250 .312 .375 .437 .500	.337 .400 .462 .535 .602 .670	. 226	. 032	350	325
STEEL MANDREL OTHER COLORS AND FINISHES AVAILABLE		QASK504 QASK505 QASK508	$\begin{aligned} & \text { BSCQ-05-04 } \\ & \text { BSCQ-05-05 } \\ & \text { BSCQ-05-08 } \end{aligned}$	$\begin{aligned} & .156 \\ & 5 / 32 \end{aligned}$	$\begin{gathered} .160 / .164 \\ \# 20 \end{gathered}$	$\begin{aligned} & \hline .126 \\ & .251 \\ & .376 \\ & \hline \end{aligned}$	$\begin{array}{r} .187 \\ .312 \\ .437 \\ \hline \end{array}$	$\begin{aligned} & .250 \\ & .375 \\ & .500 \\ & \hline \end{aligned}$	$\begin{array}{r} .425 \\ .550 \\ .670 \\ \hline \end{array}$. 281	. 040	525	450
		QASK604 QASK606 QASK608 QASK610 QASK612 QASK614	BSCQ-06-04 BSCQ-06-06 BSCQ-06-08 BSCQ-06-10 BSCQ-06-12 BSCQ-06-14	$\begin{aligned} & .187 \\ & 3 / 16 \end{aligned}$	$\underset{\# 11}{.192 / .196}$	$\begin{aligned} & .126 \\ & .251 \\ & .376 \\ & .501 \\ & .626 \\ & .751 \end{aligned}$	$\begin{aligned} & .187 \\ & .312 \\ & .437 \\ & .562 \\ & .887 \\ & .812 \end{aligned}$	$\begin{aligned} & .250 \\ & .375 \\ & .500 \\ & .625 \\ & .750 \\ & .875 \end{aligned}$	$\begin{aligned} & .450 \\ & .575 \\ & .700 \\ & .850 \\ & .980 \\ & 1.110 \end{aligned}$. 344	. 050	750	650
		QASK804 QASK806 QASK808 QASK810 QASK812 QASK814 QASK816	$\begin{aligned} & \text { BSCQ-08-04 } \\ & \text { BSCQ-08-06 } \\ & \text { BSCQ-08-08 } \\ & \text { BSCQ-08-10 } \\ & \text { BSCQ-08-12 } \\ & \text { BSCQ-08-14 } \\ & \text { BSCQ-08-16 } \\ & \hline \end{aligned}$	$\begin{aligned} & .250 \\ & 1 / 4 \end{aligned}$	$\underset{\mathrm{F}}{.2571 .261}$.126 .251 .376 .501 .626 .751 .876	$\begin{aligned} & .187 \\ & .312 \\ & .437 \\ & .562 \\ & .687 \\ & .812 \\ & . .937 \\ & \hline \end{aligned}$	$\begin{aligned} & .250 \\ & .375 \\ & .500 \\ & .625 \\ & .750 \\ & .875 \\ & 1.000 \end{aligned}$.500 .625 .750 .900 1.030 1.160 1.290	. 468	. 071	1250	1050

